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Abstract. We consider a gas of interacting relativistic effective mesons (qualitatively, like those produced
in a heavy-ion collision), regarded as an out-of-equilibrium statistical system. We suppose large occupation
numbers, temperature somewhat below typical critical temperatures and the quasi-classical regime. At
some initial time %o, let the gas be in a nonequilibrium state, with spatial inhomogeneities. The time
evolution of the gas for ¢ > ¢ is studied by a moment method, and appropriate long-time approximations,
which could yield the approach to global thermal equilibrium, are discussed.
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1 Introduction

In heavy-ion collisions, an important issue is how ther-
mal equilibrium is created [1,2]. After a time less than
some fm/c, quarks and gluons have thermalized locally,
temperatures have fallen a bit below the critical temper-
atures, and the confinement and chiral phase transitions
have occurred. Then, large numbers of pions are produced
and, for a time interval between about some fm/c and a
few tens of fm/c, before “freeze-out”, the pions can be
regarded, as least approximately, as a nonequilibrium in-
teracting relativistic quantum gas. We leave aside many
important physical features [2] and focus on the time evo-
lution of the pion gas and the eventual formation of a
state of more global thermal equilibrium, say, its thermal-
ization. Even leaving aside gauge degrees of freedom and
half-integral spin, the analysis is still difficult due to many
degrees of freedom out of thermal equilibrium, relativity
and quantum aspects. For accounts of nonequilibrium rel-
ativistic quantum field theory, see [3,4]. We shall analyze a
meson gas, qualitatively similar to, but far simpler than,
the pion gas, in the quasi-classical approximation: in so
doing, we disregard quantum features, leaving aside their
possible or potential relevance, for instance, for Hanbury-
Brown and Twiss interferometry [2]. The latter simplifica-
tion could perhaps be not entirely unreasonable, at least
qualitatively, for describing some gross features, in suit-
ably large time and spatial scales, of a nonequilibrium
many-meson system, with mesons distributed with large
occupation numbers over their quantum states and for a
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restricted temperature range, analogue to that between
the pion mass and the critical temperatures. We accept
the possibility that interactions in the meson gas, with an
infinite number of degrees of freedom, could give rise to
thermalization, and will focus on approximations which
could lead to it. We shall deal with the time evolution
of the meson gas after some initial time ¢ = ty, analogue
of some fm/e, and its eventual approach towards approx-
imate global thermalization for long time, analogue of a
few tens of fm/c.

This work is organized as follows. Section 2 deals, for
illustrative purposes, with the nonequilibrium statistical
mechanics for one degree of freedom in an external “heat
bath”, and presents the moment technique and the long-
time approximation. Section 3 treats one generalization
of sect. 2 to an infinite number of degrees of freedom:
an effective neutral scalar field. Section 4 outlines some
generalization for effective nonlinear chiral fields. Section 5
contains some conclusions and discussions.

2 Oscillator in a “heat bath”

We shall outline the nonequilibrium statistical mechanics
of one particle of mass m and momentum p, in one spatial
dimension z, with Hamiltonian

H=p?/2m)+V, V=2""mw?+ 4) 1gz* (2.1)
in the presence of a “heat bath” at thermal equilibrium at
absolute temperature B;ql. w and g are positive constants.
The classical probability distribution W = W (z, p;t) for
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the particle fulfills the reversible Liouville equation:

ow
% = {H,W} = = +
at time t. {H,W} is the classical Poisson bracket. The
initial condition at ¢t = tg is Wy,. W seems to qualify
not just as a classical probability distribution, but also
as a quasi-classical one, say, it also accounts for the first
correction in Planck’s constant, h. In fact, let Hg be the
quantum Hamiltonian associated to (2.1), let p and [,] be
the density operator representing the quantum particle
and the commutator. The Schrédinger equation yields:

ap 1

L = —[Ho, gl (2.3)

Also, let Wg be the quantum Wigner function determined
by p [5]. The quantum evolution equation for OWq /0t,
implied by (2.3), includes in its right-hand-side additive
terms of order /%, but no corrections of order % [5]. As i —
0, Wg and the quantum evolution equation for 0Wg /0t
become W and (2.2), respectively [5]. We shall concentrate
on W and (2.2).

Any integration will be performed in (—oo, +00). We
shall introduce the following moments W,, (n = 0,1,2,...)
of W regarding the p-dependence:

((ﬂeq/Qm)l/QP)

7r1/22nn!)1/2

W, = Wy (z;t) = /den( w (2.4)

which incorporate the temperature of the “heat bath”.
H),, is the Hermite polynomial of order n. Equations (2.4)
and (2.2) imply the following infinite three-term linear

recurrence relation for all W,,’s (n = 0,1,2,...,W_; = 0):
oW,
ot = _Mn,n+1Wn+1 - Mn,nflwnfl ) (25)
(n+1)1"2 0Wppy
M, w, = 2.6
n,n+1VVn+1 [ mﬁeq o 3 ( )
n 12
Mnm—an—l = [ ]
mﬂeq
OWp— ov
x <37;1 +ﬂeq%Wn_1) .27

The initial condition W), ;, is obtained by replacing W by
Win in (2.4). A t-independent solution of eq. (2.2) is

Weq = exp[—Peq(p*/(2m) + V)]

and, through (2.4), it yields Wy, proportional to
exp[—PeqV] and W, ey = 0, n = 1,2,.... Equation (2.5)
implies exactly for any n > 0

3 / da (W)~ 271 (OW2 /0t)
n'=0

+WnMn,n+1Wn+l] =0.
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We introduce the Laplace transform:

+oo
Wa(s) = /0 dtW,, exp(—st). (2.9)

The Laplace transform of (2.5) can be solved formally.
That yields all Wn(s), for any n = 1,..., in terms of
sums of products of s-dependent linear operators D[n’; s],
n' > n, acting upon Wn,l(s) and upon all W ;,’s, with
n' > n. The D[n;s]’s are infinite continued fractions of
products of linear operators, generated by iterating

D[n;s] = [s — Mpni1D[n+ 1;8]|Mpy1 ]t (2.10)
For ¢ = 0, the harmonic oscillator, the operator
Din;s] (2.10) can be evaluated in closed form, and we
shall outline the result. Let

y = [mﬂeq/2]1/2ww,

Din; s] = Din; s; A] is given by the following fraction:
Dln;s; Al = [s+ (n+ 1)w?AD[n + 1;5; A —1]] 1. (2.12)

Let for = Hp (y) exp[-2719%], n' = 0,1,2.... Then, the
eigenfunctions of A and of D[n;s; A] are exp[—2~1y?] fu
The eigenvalues of A are n' which, through iteration
of (2.12), yield directly those of D[n;s; A] as finite frac-
tions, due to the structure A — 1. The D[n; s]’s cannot be
evaluated in closed form for g # 0.

Thus far, no long-time approximation has been made.
We shall analyze the irreversible evolution of the oscilla-
tor towards thermal equilibrium, say, its thermalization,
induced by the “heat bath”. We choose some ng(> 1) and,
for n > ng, fix s = € > 0 in any D[n; s], € being suitably
small. A crucial property, for any g > 0, is the follow-
ing: the s-independent Wojelq/QD[n;e]Wol/e?s, n > ng, are
Hermitian operators, have denumerably infinite discrete
spectra, without singularities for suitable € > 0, and their
eigenvalues have non-negative real parts. Then, the long-
time approximation for n > ng is as follows: we replace
any D[n'; s] yielding Wy,(s), n > ng, in terms of W,_1(s)
and of Wy in’s, n” > n, by D[n'; €]. That approximation
is not done for n < ng, and it is the better fulfilled the
larger ng is. It constitutes a necessary ingredient for the
approach towards equilibrium. For a simpler analysis, we
also neglect all Wy, ;,,’s for any n’ > ng and set, for small
S,

Wi (8) = —D[ng; €] Mg ne—1 Wag—1(5). (2.13)
The hierarchy becomes closed, by using (2.5), as they
stand, for n = 0,1,...,n9 — 1, and the inverse Laplace
transform of (2.13). Its t-independent solution is Wy ., and
Wh,eq =0,n=1,2,...,n9. The solutions of the closed hi-
erarchy relax irreversibly, for ¢ > to and any reasonable
Win, towards the t-independent solution: thermalization
of the oscillator due to the “heat bath”. For g # 0 and
e > 0, a rough estimate of the matrix elements of D[ng; €]
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over some finite part of its discrete spectrum has been per-
formed: it indicates that, in some average sense, the relax-
ation times for W, are adequately small. Equation (2.8)
becomes

no—1

Z / Az[(2Wo eq) "L (OW 2, /8t)] < (2.14)

which also expresses irreversibility due to the “heat bath”.
In the simplest case, ng = 1, approximate the linear oper-
ator D[1; €] by a real constant (> 0), and come to (2.5) for
n = 0. The resulting (irreversible) Fokker-Planck equation
for the quasi-classical probability distribution function W

OWo D[l;e] 0 [0 i v
Ot Peg Ox |0z "oz

with the quasi-classical initial condition W 4, at t = to.
For g = 0, possible values for the constant D[1;¢€] may
be estimated qualitatively from (2.12), but a choice for
its most reasonable value is open to discussion. The same
happens for g # 0. Equation (2.15) also follows from other
different methods [6], and a comparison with them could
perhaps help to assess D[1; €] adequately. This section ex-
tends [7], for a discretized spectrum.

] Wo (2.15)

3 Quasi-classical effective scalar fields

We shall consider a large statistical system, the dynamics
of which is described by a relativistic real scalar classical
field x, having mass parameter m and quartic coupling, in
three-dimensional space. m? is real. The classical Hamil-
tonian is, with x = (z1,z2, x3),

H= [ &x—+W, (3.1)
3
1 ox m2x?
_ 3 L
Vl‘/dx{i:zl () +5= 4wy 02
_ X _ 9!
= o 00 = (3.3)

x and 7 are x-dependent, but t-independent, fields. g is the
dimensionless coupling constant. An ultraviolet cut-off, A,
is included in H. x, m and g are unrenormalized classical
quantities. Now, there is no external “heat bath”, but the
infinite number of degrees of freedom of the classical field
will give rise to statistical effects. Let W = W([x,7;t] be
the quasi-classical probability distribution for the system
to be described, at time ¢, by the field configuration x
with momentum 7. W fulfills the quasi-classical reversible
Liouville equation. The latter reads

ow 3 oVi\ 4 ) '
oo |(R) R
0/d denotes the functional derivative. Equation (3.4) gen-

eralizes eq. (2.2) to the actual classical-field system. The
initial condition is Wy, = Wi,[x, 7] at to. Let W;, be a

(3.4)
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nonequilibrium state, with spatial inhomogeneities char-
acterized by some function 3(x): f7!(x) could be inter-
preted, at least qualitatively, as the absolute temperature
of the infinitesimal volume d®x at x. With

po = po(x) = (2/B(x))"/?,

we shall introduce the functional Hermite polynomials H,,
through the Rodrigues-like (functional differentiation) for-

mula:
Hy = (=)"exp [ / ¢’ ] o(m (Xl)(;po(xll)
x‘“mexp[ /d3x il } (3.5)

po(x)?

thereby generalizing the ordinary Hermite polynomi-
als. H,, depends on 7(x1)/po(X1),...,7(Xn)/po(xn). Let
J1dx] denote the functional integration over the classical
momentum 7(x). We shall introduce the moments W,, of

1
(n|2n)1/2

x [l

The W,,’s depend on x;,...,x, and, although not written
explicitly, also on x and ¢. Like (2.2) via (2.4), (3.4) gives,
through (3.6), the following (reversible) infinite linear hi-

W, =

m(x1)/Po(*1), -+, T(Xn) /o (%))W (3.6)

erarchy for all W,,’s (n =0,1,...,W_; = 0):
O o MW =~ Mo W (3.7)
My W = [n -2|- 1]1/2 /dSXpo(X) 6X‘2X)
XWha1(X, X1, .., Xp), (3.8)
Mppn—1Wp_1 = /d3x (12)2(;32 FP(x) izn;é(3) (x — %)

Xanl(Xl, ey X1y X1y e e ,Xn)] s (39)

5 2
dx(x)

+ oV
po(x)? ox(x)

FP(x) = (3.10)

The initial condition W, ;, for (3.7) is obtained by replac-
ing W by Wy, in (3.6). In particular, the equations in (3.7)
for n =0,1,2 can be shown to be exactly consistent with
the balance equations for momentum, energy and angular
momentum.

_ Like in sect. 2, we introduce the Laplace transform
Wy (s) of Wy, solve formally the Laplace transform of (3.7)
and get all W, (s), for any n = 1,..., in terms of similar
structures and new s-dependent linear operators D[n’; s].
The D[n; s]’s are infinite continued fractions formally sim-
ilar to (2.10).
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3.1 Initial state not far from equilibrium

Let W;,, representing also nonequilibrium, be not far from
global thermal equilibrium at constant absolute tempera-
ture 3. For instance: i) B(x) = feq + dB(x), where the
function 04(x) — 0 for |x| = +oo (and |05(x)| < Beq),
or ii) the larger parts of the gas are at global ther-
mal equilibrium at ,Beq , while the remaining, smaller,
parts are, still, out of equilibrium, with spatial inhomo-
geneities. ﬂe’ql is not imposed by any external “heat bath”,
but by the infinite number of degrees of freedom, not
far from thermal equilibrium, of the whole field system.
Then, we replace po(x) by the constant py = (2/B8¢4)"/>
n (3.5)—(3.10), and until otherwise stated. Then, W ¢, =
exp[—feq [ A3xVi(x)] and W,y = 0, n > 1 yield a
t-independent solution of (3.7). Equation (3.7) implies ex-
actly the analogue of (2.8). With the actual W;,, the long-
time approximation, with D[ng; s] ~ D[ng; €] for n > ny,
proceeds formally like in sect. 2, and it is the better ful-
filled the larger ng is. The approximation seems justified
due to the integrations and functional dependences in-
volved in (3.8) and (3.9), say, to the infinite number of
degrees of freedom of the large statistical system. Then,

Wojelq/QD[n; e]Wol’/;]’s, n > ng, now have continuous spec-
tra. In principle, the operator D[n'; €] depends on g and
on the dimensionful quantities €, m, A and 3;, . The ana-
logue of (2.14) also holds. For ng = 1, by proceedlng like in
sect. 2, the resulting (irreversible) Fokker—Planck equation
for the quasi-classical probability distribution functional
W() is

aWo ,
at_ﬁeq /d 5x

with the quasi-classical initial condition W 4, at t = to.
x = x(x) plays the role of an order parameter. The
t-independent solution of (3.11) is Wy 4. The ansatz has
been made of interpreting D[1;€] as a positive constant,
instead of as an operator. Then, the solutions of (3.11)
relax irreversibly, for ¢ > ¢y and any reasonable W ;,,, to-
wards Wy ¢q: thermalization. Physically, the larger parts
of the gas, already at, or close to, global thermal equilib-
rium at ﬂe_ql at tg, iron out all spatial inhomogeneities and
drive the remaining, smaller, parts also to the same global
equilibrium distribution at ﬂ Wo,eq, for long times.

FP(x)Wo (3.11)

eq

3.2 Removing the cut-off

With the same W;,, as in subsect. 3.1, let us now remove
the ultraviolet cut-off in (3.11): A — 4o0c. We apply re-
sults in [8,9] to (3.11). With the quartic self-coupling in
eq. (3.3), Wy eq characterizes a superenormalizable theory
in three spatial dimensions. In W ¢, and in the dynamical
theory described by (3.11) for ¢ > ¢, mass renormalization
is necessary but neither y nor g require ultraviolet renor-
malization. The question then arises whether the constant
D[1; €] would require it: if that were the case, that would
signal some physical failure in the long-time approxima-
tion. It turns out that D[1;€] does not require any ultra-
violet renormalization either. Then, the dynamical theory
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described by (3.11) for ¢ > t¢ is also superenormalizable.
Physically, D[1;¢€], being related to long-time and large-
distance behaviours, should remain finite as 4 — +oc.
This indicates, a posteriori, that the long-time approxi-
mation does not run into conflict with the ultraviolet be-
haviour, at least in the actual three-dimensional classical
model. The above analysis for ng = 1 suggests the fol-
lowing, for ng > 1. The approximate dynamical theory
given by the analogue of (2.13) with D[ng; €] interpreted
as a positive constant, and by (3.7) for n < ng would be
superenormalizable and would relax for a long time to-
wards the same Wy ., as above. D[ng; €] would require no
ultraviolet renormalization, only m being in need of it.

3.3 Initial state far from equilibrium

Now, let the gas be at tq in a state Wy, quite appreciably
out of global thermal equilibrium, say, with spatial inho-
mogeneities so that (x) is neatly different from any fe,.
Now, we deal with (3.7) with pg = po(x). The long-time
approximation also proceeds (formally, at least) by set-
ting s = € in any D[n'; s] for n' > n > ng(> 1). The her-
miticity and positivity properties of D[n'; €] in subsect. 3.1
no longer hold necessarily, due to the x-dependence of
po- Equations (2.8) and (2.14) do not hold necessarily.
Anyway, simplifying assumptions similar to those yield-
ing (3.11) now give (at least, formally and for fixed A) the
generalized Fokker-Planck equation:

oWy 3 pO ) J
T - Pllie /d 2 ox(x)

xpo(X)FP(x)Wo (3.12)

with the quasi-classical initial condition Wy ;, and a real
and positive constant D[1; €], so that irreversibility holds.
As po = po(x), the actual equilibrium distribution Wy ¢,
is not given by FP(x)Woy,q, = 0, but as the limit of the
solution Wy of (3.12) for ¢ — +oc: such Wy, would
require longer times to be reached and depend on some
global equilibrium temperature (# po(x)?/2). See [8], for
instance, for functional integral representations of Wy ¢, .

4 Quasi-classical effective chiral fields

Let the meson gas be a nonequilibrium (quasi-classical)
large statistical system, described by the simplest (O(N)-
invariant) nonlinear o model [8]. Let x; = x;(x), i =
1,...,N — 1, be classical effective nonlinear chiral fields
for mesons and 7; = m;(x) be their associated momenta.
The classical Hamiltonian is

H= /d3xh(, +WVi, (4.1)
2 N—
= 70 Z )i T (4.2)
9 N-1 3 Oxi Ox
n=% /d3xi’j:1 laij ; (a%a%j)] , (43
Gy = by + XL (4.4)
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The coupling constant g, is now dimensionful. G~! is the
inverse of the (N — 1) x (N — 1) matrix formed by all G;;.
An ultraviolet cut-off about or somewhat larger than g, is
supposed. The role played in sect. 3 by the functional Her-
mite polynomials H, will now be played by new functional
polynomials H, , which, by definition, are orthogonalized
with respect to the functional measure

/@dm] oo [ [ oo #n].

H,; , would allow to introduce moments and to gen-
eralize formally the developments and results in sect. 3.
Thus, if the initial nonequilibrium distribution at t¢ is not
far from global thermal equilibrium at constant absolute

temperature ﬂe_ql, the counterpart of (3.11) reads for long

times
0Wo  D[l;€] N‘l/ . 0=
= d°x G i.9
at ,Beq ; 5XZ (X) ]z:; ( ) sJ
XFP]' (X)WO s (45)
—171/2
FP;(x) ] % dIn[det G . (46)

=5, P, T o,

[det G™'] denotes the determinant of G~! (arising from
[TINS'[dmi)), both as a (N — 1) x (N — 1) matrix de-
terminant and as a functional determinant. D[1;¢] is a
positive constant. Equation (4.6) has the t-independent
solution

Wo,eq = [det G_l]_1/2 exp [—,Beq /d3le] ,

to which W, relaxes (at least, formally) for long times. For
fixed ultraviolet cut-off, the analysis in subsect. 3.1 could
apply in principle, but [det G™'], Wy ., and (4.6) would
require a detailed regularization and study, through tech-
niques related to those employed for the quantum nonlin-
ear o model [8]. See [10] for the dynamics of a relaxational
nonlinear o model, for cooperative phenomena.

5 Conclusion and discussion

We have treated a nonequilibrium meson gas, through
quasi-classical effective fields, as a caricature of the pion
gas produced in a heavy-ion collision, say, between the
phase transitions and “freeze-out”. For simplicity, we
started out with one degree of freedom and, later, turned
to an infinite number of degrees of freedom: a scalar field
and nonlinear chiral fields. At some initial time ¢¢, the me-
son gas is out of global thermal equilibrium. Neither trans-
port theory nor Kubo formulae have been invoked. The
temporal evolution of the gas has been analyzed through
three-term linear hierarchies for moments of probability
distributions. They provide an adequate framework to in-
fer that, due to the infinite number of degrees of free-
dom involved and under suitable long-time approxima-
tions: a) higher-order moments follow adiabatically the
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dynamics of the lower ones, and b) lower-order moments
drive the relaxation towards approximate global thermal
equilibrium. Not far from global thermal equilibrium, cer-
tain Hermiticity and positivity properties of the operators
Din; €] play a crucial role. Those techniques seem, so far,
less efficient for direct quantitative estimates of relaxation
times: for this reason, one would require explicit approxi-
mations for the D[n;€]’s, outside our scope here.

In [3], the nonequilibrium quantum generating func-
tional Z associated to (3.1)—(3.3) has been analyzed
for long times, with several quasi-classical assumptions
and approximations. Then, Z becomes approximately the
nonequilibrium generating functional for a purely dissipa-
tive quasi-classical functional Fokker-Planck process, for
a suitable order parameter. The nonperturbative quasi-
classical and long-time approximations in sect. 3 are quite
different from those in [3], but both [3] and the present
work lead, essentially and consistently, to equivalent
Fokker-Planck dynamics. The time evolution and long-
time thermalization in classical-field theories has been in-
vestigated by other different methods: see [4,11-15].
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